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Abstract
A first-principles calculation procedure is given for determining the structure,
elastic response and stability of a crystal in equilibrium under anisotropic stress.
Under a strain the change in internal energy plus the work done by the crystal is
shown to be a minimum with respect to structural changes, and to be expandable
in powers of the Eulerian strains. The coefficients of second-order terms in the
expansion are shown to be effective elastic constants for the equilibrium crystal
which determine stability. Application to body-centered tetragonal (bct) Al
leads to evaluation of lattice parameters as functions of lateral and longitudinal
stresses. Two stable bct phases at a given longitudinal stress are found, one
with the lateral stress mainly larger and one with lateral stress smaller than the
longitudinal stress. The stability of the structure in each of these bct phases is
established by showing that all the eigenvalues of the effective elastic constant
matrix are positive.

1. Introduction

The equilibrium properties of crystals under stress show substantial change from these
properties at zero stress. Application of hydrostatic pressure has led to large changes in
three equilibrium properties: structure, elastic response and stability, including discontinuous
changes to new phases. First-principles band-structure programs have calculated these three
properties as functions of hydrostatic pressure with good accuracy. However the effects
of anisotropic stress on these properties would be a vast expansion of basic knowledge of
crystals that has not been made. Complications have arisen in the analysis of properties
under anisotropic stress such as the lack of an equilibrium Gibbs free energy, the fact that
the elastic constants for stress–strain relations are different from the elastic constants in the
elastic equations of motion, and the fact that both kinds of elastic constants do not have the full
Voigt symmetry in their four-index components [1, 2].

Here we treat the effects of anisotropic stress in a crystal in equilibrium under that stress in
a way that avoids all the complications noted above. We expand both δE , the change in internal
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energy of the crystal, and δW , the sum of the work done by the stress in the crystal at each face
on a reservoir that balances the stress at that face, in a power series in the six components
of Eulerian strains. The expansions in these strains, which can describe the nonrotational
part of any homogeneous deformation, are carried to second order in the strains. The two-
index coefficients of the second-order terms in δE + δW are shown to act as effective elastic
constants which determine elastic response and stability of the equilibrium state, since δE+δW
is shown to have a minimum property like δG = δE + pδV in the hydrostatic case. A first-
principles calculation is carried out on body-centered tetragonal (bct) Al which shows how
the structure, elastic response and stability vary as the two stress components (σ1 laterally
and σ3 longitudinally) on equilibrium bct Al vary. An interesting new feature is that as the
magnitude of σ1 drops below the magnitude of σ3 a range of instability and discontinuous
structural changes occurs.

Section 2 gives the general formulation which justifies the expansion in strain components
and leads to the interpretation of the second-order coefficients as effective elastic constants.
Section 3 describes the first-principles calculation procedures which find the stresses in a given
structure, the effective elastic constants and the stability of the structure. Section 4 describes the
calculations’ results that show how the structure and stability vary as functions of σ1 and σ3. In
section 5 we discuss the significance of unstable ranges of anisotropic stress for experiment, the
validity of the two-index elastic constants and their relation to the standard four-index elastic
constants.

2. General formulation

A homogeneous Bravais crystal of specified structure, i.e., of given values of the lattice vectors
a, b, c that generate the lattice, has values of volume V per atom, internal energy E per atom
and stresses σi , i = 1–6, that can be calculated from first principles with good accuracy. Any
homogeneous deformation of the given structure can be described by a set of Eulerian strains
εi , i = 1–6, ({εi }) after rigid rotations have been taken out [3].

The lattice vectors of the strained structure a′, b′, c′ are functions of the {εi } through matrix
equations [3]

ε =
(

ε1 ε6/2 ε5/2
ε6/2 ε2 ε4/2
ε5/2 ε4/2 ε3

)
, R =

( a1 b1 c1

a2 b2 c2

a3 b3 c3

)
, R′ =

( a′
1 b′

1 c′
1

a′
2 b′

2 c′
2

a′
3 b′

3 c′
3

)
,

R′ = (I + ε)R, (1)

where ε is the strain matrix, I is the identity matrix, and the ai , bi , ci , a′
i , b′

i , c′
i , i = 1, 2, 3 are

components in orthogonal axes.
Since E can be calculated for any R′, δE is a function of the {εi} and we can expand δE

around the specified structure for small values of {εi} in a power series; to second order the
series is

δE

V0
≡ E − E0

V0
=

6∑
i=1

ciεi + 1

2

6∑
i, j=1

ci jεiε j , (2)

where V0, E0 refer to the specified original structure R and E to the strained structure R′.
The stresses σi in the crystal at equilibrium are defined as

σi = 1

V0

(
∂ E

∂εi

)
0

= ci , (3)

where ε j = 0, j �= i . If the stresses ci in the original state are balanced by equal and opposite
stresses applied to the six separate faces of the crystal by external reservoirs, the original
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crystal is in a constrained-equilibrium state of anisotropic stress. This state is analogous to
the constrained-equilibrium states under hydrostatic pressure applied by an external reservoir
on all faces to balance an internal pressure.

In the state of constrained equilibrium the crystal has well-defined elastic responses and
a stability dependent on that response that will be determined here. These features in the
hydrostatic case are easily found from a Gibbs free energy G = E + pV (at T = 0). For
the anisotropic case we need a replacement for G.

Actually it will be adequate to find a replacement for δG around the equilibrium state,
which will have an expansion in {εi } to second order that will give the elastic response and
stability for small strains. We need the analogue of the theorem that G is a minimum in
equilibrium at constant pressure, since in the hydrostatic case elastic response comes from
the curvature of δG({εi}) and stability from the positive definiteness of δG for all {εi }. In the
present case we apply the thermodynamic theorem that the internal energy of a closed system is
a minimum at equilibrium. If the closed system is the crystal plus the reservoirs that apply the
external stresses, then the theorem states that δE +δW > 0 for all {εi}, where δE is the change
in E of the crystal and δW is the work done by the crystal on the reservoirs (which increases
the internal energy of the reservoirs). For hydrostatic pressure p we have δW = pδV and the
stability condition is δE + pδV = δG > 0, but for anisotropic stress δW will be broken up
into separate contributions from the individual stresses on each face of the unit cell.

In the hydrostatic case at equilibrium

δG

V0
= 1

2

6∑
i, j=1

ci jεiε j , (4)

where the ci j are the elastic constants. Similarly in the anisotropic-stress case at equilibrium
we have

δE + δW

V0
= 1

2

6∑
i, j=1

ci jεiε j + 1

2

6∑
i, j=1

c̃i jεiε j ≡ 1

2

6∑
i, j=1

ci jεiε j , (5)

where the c̃i j come from the terms in δW second order in the {εi }, and

ci j ≡ ci j + c̃i j . (6)

The first-order terms in {εi} in δE and δW cancel, just as in the hydrostatic case.
We now evaluate ci j and c̃i j in the specific case of body-centered tetragonal (bct) Al from

first principles. There are two structural parameters abct and cbct, and two stress components
σ1 on the lateral faces and σ3 on the longitudinal faces in orthogonal axes x1, x2, x3 with x3

along the cbct axis, x1 and x2 along the sides of the square tetragonal face. We will find as
functions of σ1 and σ3 the parameters abct, cbct, ci j , c̃i j , ci j . Instability will be found from
a negative eigenvalue of the 6 × 6 {ci j} matrix, which indicates that 1

2

∑6
i, j=1 ci jεiε j is not

positive definite.
The development here is similar to that of Wang et al [4]. In [4] a Gibbs driving force is

defined as the sum of an energy (the Helmholtz free energy) change and a work term along a
deformation path. This driving force is expanded in strain components to give elastic constants
as coefficients in the expansion. The positive definiteness of a quadratic form in the strains
with these elastic coefficients is used as a criterion of stability. Our development uses the
simpler Eulerian strains where Wang et al use Lagrangian strains, but we are careful to expand
to second order in the Eulerian strains. We also simplify by using the simpler Voigt indices on
strains, stresses and second-order expansion coefficients. We use the procedures established in
previous work to find quantitative values of the structure, elasticity and stability of tetragonal
equilibrium states of Al under anisotropic tetragonal stresses where (5) replaces (4); the stresses
from (3) can range over the entire σ1–σ3 plane as a and c change.
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3. Calculation procedures

3.1. Background

The starting point is the epitaxial Bain path (EBP) of bct Al, initially assumed to be at zero
applied pressure, p = 0. Recall that a Bain path is a path in the tetragonal plane (defined
by the tetragonal lattice parameters a = abct and c = cbct) that goes through various bct
energy minima, and the EBP is the unique Bain path along which the stress in the c direction
vanishes [5]. Accordingly, the EBP is calculated by finding at each value of a the value of c at
which the stress along c is

σ3 = 1

V

(
∂ E

∂ε3

)
ε1

= 2

a2

(
∂ E

∂c

)
a

= 0, (7)

where E is the energy, ε3 the strain in the c direction, and the volume V = a2c/2.
The EBP of bct Al at p = 0 is plotted in the form of E versus a in the top panel of

figure 11. At the minima of E along the EBP the transverse stresses σ1 = σ2 vanish since

σ1 = σ2 = 1

V

(
∂ E

∂ε1

)
ε3

= 2

a c

(
∂ E

∂a

)
c

= 0. (8)

The deepest minimum of E is found here to be at a = abct = 2.854 Å, c = cbct =
4.0524 Å, in good agreement with the experimental value for face-centered cubic (fcc) Al
afcc = 4.0496 Å [9]. At points away from the minima along the EBP σ3 is still 0 by
construction, but the in-plane stress σ1 = σ2 is finite and changes in magnitude for different
states along the EBP. Hence calculating σ1 along the EBP satisfies one goal of the present work
to determine σ1 as a function of structure.

If we wish to find equilibrium of a crystal under a finite hydrostatic pressure p, the EBP
can be generalized by substituting for the condition (7) the new condition σ3 = −p, and by
seeking a minimum of the Gibbs free energy per atom at p (at T = 0 to cancel the entropy
term) defined by G = E + pV [5]. We have calculated (see footnote 1) both E and G for bct Al
under three different pressures: 600, 1200 and 1840 kbar (10 kbar = 1 GPa); they are plotted
in the three lower panels of figure 1. For each p the deepest minimum of G determines the
equilibrium structure of Al at that pressure, since at that point the in-plane stress σ1 is also −p,
thus establishing hydrostatic conditions. Figure 2 shows the calculated pressure dependence
of afcc, in good agreement with the experimental data of Akahama et al above 1800 kbar, as
already reported in [10]. For each state along the generalized EBP the in-plane stress σ1 varies,
a variation that we will presently determine.

3.2. Calculation of the lateral stress σ1 for a given σ3

At each point (a1 = a2, c1) along the E curve on the EBP at p

σ3 = c1

V1

(
∂ E

∂c1

)
a

, σ1 = a1

V1

(
∂ E

∂a1

)
c

, (9)

1 The calculations were done with the WIEN2k computer program developed by Blaha and co-workers [6]. This
program uses the FPLAPW method for computation of the electronic structure of solids from the Kohn–Sham equations
of density functional theory [7, 8]. The calculations in this work were done with the semi-relativistic GGA and with
the following parameters: muffin-tin radius of Al RMT = 1.9 bohr; criterion for energy convergence 1 × 10−6 Ryd;
plane-wave cutoff RKmax = 9; largest vector in the charge-density Fourier expansion G M AX = 16 bohr−1; k-point
sampling in the Brillouin zone of 32 000 points (2180 in the irreducible wedge of the Brillouin zone, IBZ) for the EBP
computations, and 8000 points (700 in the IBZ) for the {ci j } calculations.
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4 4.5 5 5.5 6 6.5 7
abct (bohr)

Figure 1. Epitaxial Bain paths (EBPs) for Al at the pressures p indicated. E is the energy, G the
Gibbs free energy G = E + pV at T = 0 K (V = volume per atom).

Figure 2. Pressure dependence of the lattice constant afcc of face-centered cubic Al. Solid circles,
calculated values; crosses, experimental values of Akahama et al [11].

where V1 = c1 a2
1/2. If both a1 and a2 are changed to a, then

∂ E

∂a
= ∂ E

∂a1

∂a1

∂a
+ ∂ E

∂a2

∂a2

∂a
= 2

∂ E

∂a1
, (10)
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(since ∂a1/∂a = ∂a2/∂a = 1). Replacing ∂ E/∂a1 by σ1 in (9) we find

σ1 = a

2V

(
∂ E

∂a

)
c

= σ2, (11)

where V = c a2/2.
To find σ1 we will use the derivative of E along the EBP combined with (∂ E/∂c)a; we

start from the derivative of E with respect to the distance s along the EBP arc length:

dE

ds
=

(
∂ E

∂a

)
c

da

ds
+

(
∂ E

∂c

)
a

dc

ds
, (12)

whence (
∂ E

∂a

)
c

=
[

dE

ds
−

(
∂ E

∂c

)
a

dc

ds

]/
da

ds
. (13)

Now from σ3 = (c/V )(∂ E/∂c)a = −p we get(
∂ E

∂c

)
a

= − p V

c
(14)

hence from (11) and (12)

σ1 = a

2V

[
dE

ds
− p V

c

dc

ds

]/
da

ds
. (15)

For the derivatives with respect to s we construct a table with successive values of E , a, c, and
s (with s the distance along the EBP from a reference point, e.g. the minimum) and calculate
the d/ds derivatives needed in (15). Thus for any pressure p, i.e. for constant σ3 = −p, we
will find the value of the in-plane stress σ1 associated with each pair of a and c parameters.

3.3. Stability of structures under anisotropic stress

We now address the question of stability of the structures found above which are in constrained
equilibrium under longitudinal stress σ3 and transverse stress σ1. The goal is to find the effective
elastic constants ci j of those structures and then to examine whether or not the eigenvalues of
the {ci j} matrix are positive, as discussed in section 2. For each (a, c) state along the EBP we
apply the procedure described in the following.

To evaluate the coefficients in (5) we consider the terms δE and δW separately. First
we examine the strain terms in δE . For tetragonal structures (2) contains 2 first-order and 6
second-order terms as follows

δE

V
= c1(ε1 + ε2) + c3ε3 + 1

2
c11(ε

2
1 + ε2

2) + c33

2
ε2

3 + c44

2
(ε2

4 + ε2
5)

+ c66

2
ε2

6 + c12ε1ε2 + c13(ε1ε3 + ε2ε3). (16)

We will not consider the shearing constants c44 and c66, which are associated with strains
shearing tetragonal symmetry.

For each (a, c) state, we calculate the energy E for two strains ±ε1, εi = 0, i �= 1 so that

1

V
δE (1) = c1ε1 + 1

2
c11ε

2
1 , (17)

1

V
δE (2) = −c1ε1 + 1

2
c11ε

2
1 . (18)

6
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Then
1

V
δE (1) − 1

V
δE (2) = 2c1ε1, (19)

1

V
δE (1) + 1

V
δE (2) = c11ε

2
1 . (20)

Thus (19) and (20) evaluate c1 (≡ σ1) and c11, respectively. Similarly the strains ±ε3, εi = 0,
i �= 3 give c3 (≡ σ3) and c33.

With a strain ε1 = ε2 (= e), ε3 = ε4 = ε5 = ε6 = 0,
1

V
δE (3) = 2c1e + (c11 + c12)e

2. (21)

Then substitution of c1 from (19) and c11 from (20) in (21) gives c12. Similarly c13 is obtained
from ε1 = ε3 = e, ε2 = ε4 = ε5 = ε6 = 0.

Next we want to find the coefficients c̃i j of the second-order terms in the expansion of
δW in Eulerian strains to use in (6) to find the ci j . This calculation for bct structure is most
easily carried out with the rectangular two-atom bct cell with lattice vectors a = abct, b = a
and c = cbct. Then the two stresses σ1 and σ3 are in the direction of orthogonal axes along the
sides of the rectangular cell, the faces are perpendicular to these axes and the movement of the
faces in the strains used for δE is along these same axes, hence the strains only change the bct
structure into an orthorhombic one, but the orientation of faces and their movements remain in
the bct directions.

So in the simple case of the rectangular cell, δW is made up of just three terms, one for
each face, e.g. for the b–c face the work is the outward force on the b–c surface given by
−σ1(b × c) · x̂1 acting through the displacement of δa · x̂1 where δa ≡ a′ − a and x̂1 is the unit
vector along a.

Since the b–c face changes to b′–c′ linearly with the strain we use the average value of the
face area to write compactly for δW for the rectangular cell

δW = −σ1

(
b × c

2
+ b′ × c′

2

)
· δa − σ1

(
c × a

2
+ c′ × a′

2

)
· δb

− σ3

(
a × b

2
+ a′ × b′

2

)
· δc. (22)

Actually we need just the part of δW that is second order in the strains. From (22) this part is

δW2 = −σ1

(
b × δc · δa

2
+ δb × c · δa

2

)
− σ1

(
c × δa · δb

2
+ δc × a · δb

2

)

− σ3

(
a × δb · δc

2
+ δa × b · δc

2

)
. (23)

Then δE + δW2/2 is the value per atom, which can be used directly to find the ci j , just as δE
alone was treated in (17)–(21) to find the ci j .

Note that the volume change per atom δV = V − V0 can be expanded in products of δa,
δb, δc up to third order, since

δV ≡ V − V0 = (a + δa) × (b + δb) · (c + δc) − a × b · c. (24)

Hence the second-order part per atom is

δV2 ≡ (V − V0)2 = a × δb · δc
2

+ δa × δb · c
2

+ δa × b · δc
2

. (25)

Then the substitution σ1 = σ3 = −p in (23) gives for δW/2
δW2

2
= p δV2, (26)

which is the correct work term in the hydrostatic case per atom.
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Figure 3. Lattice parameters abct, cbct and volume per atom V of bct Al as functions of −σ1

(transverse stress) at −σ3 = p = 0.

Note that the six volume-change terms in (23) per rectangular cell combine to give (twice)
the three terms of (25) per atom when σ1 = σ3. Note also that when the origin remains in one
corner of the rectangular cell, all three faces attached to the origin do not change and all the
work is done at the three unattached faces which give the three terms in (22).

Applying to δW2 the same procedure that was used to calculate the ci j for δE will produce
the c̃i j that appear in (5). Then (6) will produce the ci j . Finally, calculation of the eigenvalues
of the ci j matrix at each (a, c) value will test the stability of the (a, c) state under considera-
tion. A negative eigenvalue means that an eigenfunction exists, i.e. a strain exists, which makes
(1/2)

∑
ci jεiε j negative, hence δE + δW is not at a minimum at that (a, c).

4. Results

Since by convention a negative stress corresponds to a compression, in the following figures
we plot various quantities versus −σ1 in order to adhere to normal intuition, so that, e.g.,
−σ1 = 150 kbar means 150 kbar compression.

Consider first the case p = −σ3 = 0. In figure 3 we plot, in three panels, the results
of calculations of abct, cbct and V = volume/atom versus −σ1. For abct (upper panel) we
distinguish three branches: a lower branch which goes from about 150 kbar compression
through 0 to about 58 kbar tension; an intermediate branch from 58 kbar tension through 0
to about 22 kbar compression; and an upper branch from 22 kbar compression through 0 to
about 90 kbar tension. The state at −σ1 = 0 in the lower branch corresponds to the case

8
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Figure 4. Lattice parameters abct of bct Al at constant −σ3 = p = 0, 600, 1200, 1840 kbar, as
indicated, as functions of −σ1.
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Figure 5. Lattice parameters cbct of bct Al at constant −σ3 = p = 0, 600, 1200, 1840 kbar, as
indicated, as functions of −σ1.

of the crystal in vacuum, the equilibrium state at zero pressure. It is expected that several of
the states represented by the full circles in figure 3 will be unstable, which is what we will
determine below. Similar considerations apply, mutatis mutandis, to cbct(−σ1) (middle panel)
and to V (−σ1) (bottom panel).

At finite pressures the dependence of the lattice parameters on −σ1 is similar, but the
curves shift toward larger compressions, as shown in figures 4 and 5. For the three pressures
considered here (p = −σ3 = 600, 1200 and 1840 kbar) the (abct, cbct) states associated with
−σ1 = 600, 1200 and 1840 kbar, respectively (i.e. for σ1 = σ3) on the lower branches are
under hydrostatic pressure. All the others are states under anisotropic stress since σ1 �= σ3.

The information provided by these figures is of practical interest for the following reason.
In an experiment in which the pressure applied along the c axis has a known value, say,
1200 kbar (e.g. in a diamond-anvil-cell experiment), but hydrostatic conditions may not apply
(intentionally or otherwise) the pertinent curves in figures 4 and 5 show which structure will be
found depending upon the magnitude of the transverse stress σ1. The structure will be under
anisotropic stress.

9
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Figure 6. Magnitude of the smallest eigenvalue (SE) of the {ci j } matrix (left scale) and of the abct
parameter (right scale) of bct Al versus −σ1 at −σ3 = p = 0.

Figure 7. Magnitude of the smallest eigenvalue (SE) of the {ci j } matrix (left scale) and of the abct

parameter (right scale) of bct Al versus −σ1 at −σ3 = p = 600 kbar.

What remains to be established is whether the structure is stable. The procedure described
in section 3.3 provides the answer, as summarized in figures 6 and 7 for the cases p = −σ3 = 0
and p = −σ3 = 600 kbar, respectively. The figures show the values of the smallest eigenvalue
of the {ci j} matrix for all states along the EBPs of figure 1 for the two values of σ3 considered
here. In figures 6 and 7 we have also redrawn, for convenience, the curves of abct(−σ1) that
appear in figures 4 and 5. We see that all states on the lower branch of the abct(−σ1) curves are
stable, since all eigenvalues of the {ci j} matrix are positive, but the states on the intermediate
and part of the upper branch are unstable. Interestingly, states with larger abct values (at the
leftmost end of the upper branches considered here) are stable again, so that a hypothetical
experiment carried out with decreasing lateral stress at constant longitudinal stress would reveal
a discontinuous change in lattice parameters and formation of another phase. We have not done
the calculation of eigenvalues of {ci j} for the cases of p = 1200 and 1840 kbar, but we expect
that their behavior will be similar to that shown in figures 6 and 7.

10
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5. Discussion

The problem studied here is a more restricted one than Barron and Klein [1] or Wallace [2]
discuss. We study an equilibrium state achieved by finding the anisotropic stresses in a crystal
with a given structure and then matching those anisotropic stresses with equal and opposite
stresses applied to the faces of the crystal. In [1] and [2] an arbitrary anisotropic stress is
imposed on a crystal with a given structure and equilibrium is not sought or mentioned. But by
starting with equilibrium we deal with stresses with the symmetry of the given structure and can
focus on strains related to that symmetry, e.g., the rectangular axes of bct Al. When the imposed
stresses are arbitrary, the crystal is not in equilibrium and will change with time. An equilibrium
may be reached with time, but the theory would have to solve for that equilibrium structure.
Experiments that are stationary in time will generally measure the equilibrium structures to
which our calculations apply as the applied stresses change.

In [1] and [2] the internal energy is expanded in power series in the strains with first-
order and second-order terms dependent on the applied stresses. In our formulation we can
expand δE + δW in strains and invoke a minimum principle at equilibrium that makes the first-
order terms vanish and allows the second-order terms to function as an elastic response which
determines stability in states of anisotropic stress.

The procedure described here and illustrated for bct Al seems generalizable to any
symmetry and crystal, i.e. assume structure, find stresses to balance for equilibrium (including
relaxation of all atomic positions not fixed by symmetry) and expand δE + δW around
equilibrium in six components of Eulerian strain to find two-index effective elastic constants as
coefficients of second-order terms.

The bct case required just three work terms, one for each face, since the faces are
perpendicular to the orthogonal axes and the stresses have only components along the axes.
For the case of no symmetry each face would need to be projected on three axis planes, and
three work terms calculated on each of those planes using the three components of stress on
that plane—a total of 27 contributions.

The results for bct Al show variation of structure and stability as σ3 and σ1 vary and could
cover all values of σ1 and σ3. They show that abct decreases and cbct increases as the lateral
compressive stress (−σ1) increases. But abct and cbct turn out to be multivalued functions of σ1

in certain ranges, and what might be called a ‘turnaround region’ exists. Starting from the high-
compression behavior (large values of −σ1) abct increases as the lateral compression decreases
until −σ1 reaches a minimum and the abct values enter a second branch in which abct increases
as compression increases—a generally unstable situation. But a second turnaround occurs and
abct again increases on a third branch as the compression starts to decrease. This turnaround
behavior occurs for both abct and cbct at all values of σ3 studied here, from 0 to 1.6 Mbar. In the
turnaround region and in the upper branch instabilities and discontinuous changes in structure
occur. If an experimental sequence of anisotropic stresses with |σ1| < |σ3| (which could occur
experimentally) crosses this region, anomalous changes in structure are indicated. We have not
at this point explored instabilities that break the tetragonal symmetry, which would complicate
the behavior.

The two-index coefficients ci j , which are symmetric in i and j by definition, must be some
average over the four-index elastic constants Bi jk� and Ai jk� in [1] and [2]. The existence of
the ci j seems clearly justified by the fact that δE + δW is a function of the {εi} at a particular
set of applied stresses, and the minimum theorem for δE + δW at equilibrium leads to their
elastic and stability properties. The differential quantity δE + δW is functioning like a δG,
although an equilibrium G which is a function of state does not exist. The desired properties
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of elastic response and stability for crystals in equilibrium under anisotropic stress are deduced
from δE + δW and involve multiple-valued functions a, c, ci j of σ1 and σ3.

References

[1] Barron T H K and Klein M L 1965 Proc. Phys. Soc. 85 523
[2] Wallace D C 1972 Properties of Crystals (New York: Wiley)
[3] Nye J R 1958 Physical Properties of Crystals (Oxford: Clarendon)
[4] Wang J, Li J, Yip S, Phillpot S and Wolf D 1995 Phys. Rev. B 52 12627
[5] Marcus P M, Jona F and Qiu S L 2002 Phys. Rev. B 66 064111
[6] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k An Augmented Plane Wave + Local

Orbitals Program for Calculating Crystal Properties (Kalheinz Schwarz, Techn. Universität Wien, Austria),
ISBN 3-9501031-1-2

[7] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
Kohn W and Sham L J 1965 Phys. Rev. B 140 A1133

[8] Cottenier S 2002 Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction
(Leuven: Instituut voor Kern-en Stralingsfysica) ISBN 90-807215-1-4 (to be found at http://www.wien2k.at/
reg user/textbooks)

[9] Pearson W B 1967 A Handbook of Lattice Spacings and Structures of Metals and Alloys vol 2
(Oxford: Pergamon)

[10] Jona F and Marcus P M 2006 J. Phys.: Condens. Matter 18 10881
[11] Akahama et al 2006 Phys. Rev. Lett. 96 045505

12

http://dx.doi.org/10.1088/0370-1328/85/3/313
http://dx.doi.org/10.1103/PhysRevB.52.12627
http://dx.doi.org/10.1103/PhysRevB.66.064111
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://www.wien2k.at/reg_user/textbooks
http://dx.doi.org/10.1088/0953-8984/18/48/015
http://dx.doi.org/10.1103/PhysRevLett.96.045505

	1. Introduction
	2. General formulation
	3. Calculation procedures
	3.1. Background
	3.2. Calculation of the lateral stress sigma _1 for a given sigma _3
	3.3. Stability of structures under anisotropic stress

	4. Results
	5. Discussion
	References

